Abstract
There are several approaches available for the synthesis of nanoparticles below 20nm, which is also the critical size for superparamagnetic iron oxide nanoparticles (SPIONs). In this study, we aimed to determine optimum synthesis conditions for SPIONs via a co-precipitation method as well as demonstrate the effect of each parameter on the size, morphology and magnetic character of each nanoparticle synthesized. The effects of Fe+2/Fe+3 ratio, pH and ionic strength on the morphology, size, size distribution and saturation magnetization (Ms) value of SPIONs were investigated systematically. In addition to this, the importance of using inert atmosphere was investigated and attempts to discover alternative approaches involving synthesis under air atmospheric conditions were made. Transmission electron microscopy (TEM) images show that approximately 5–6nm sized SPIONs were synthesized successfully under both air and N2 atmosphere. By adjusting the pH and the ionic strength, the growth mechanisms of particles were changed. Crystallinity of the particles was examined with an X-ray diffraction (XRD) method and the characteristic peaks of Fe3O4 nanoparticles were also obtained. Vibrating Sample Magnetometer (VSM) measurements revealed that Ms increases with increasing ionic strength. Furthermore, it was found that the geometry of spherical nanoparticles can be changed to nanoflakes by tuning the Fe+2/Fe+3 ratio. This study demonstrates, comparatively, the effects of the changes of co-precipitation parameters on the various properties of SPIONs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.