Abstract

Extended end-plated connections are preferred in moment resisting frames due to their advantages such as no required in-situ welding, accurate fabrication and economic feasibility compared to flange welded moment connections. The capacity of the extended end-plated connections depends on bolt configurations, end-plate thickness, bolt diameter and their material properties excluding column part. The thickness of end-plate can be computed using yield line mechanisms. Different yield line patterns are available in the literature and some of these are adopted in seismic codes to estimate the thickness of end-plate. In this study, the accuracy of different yield line patterns is compared using collected experimental data and numerical analysis. A parametric numerical analysis was conducted utilizing the finite element tool, ABAQUS. The results of experimental data and parametric study were evaluated for both unstiffened and stiffened four bolted extended end-plated connections. The results revealed that the capacity of the end-plate connections significantly depends on the yield line mechanism. Therefore, selecting an accurate yield line mechanism is essential in order not to overestimate the thickness of the end-plate. More importantly is that these yield line mechanisms can be directly implemented to AISC 358 and Turkish Building Earthquake Code 2018 (TBEC-2018).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call