Abstract

The volatile organic compounds (VOCs) sensing layers were studied using ZnO nanomaterials with different morphologies including hierarchical nanostructure (ZnO-H), nanorods (ZnO-NRs), commercial nanoparticles (ZnO-CNPs) and wet chemical synthesized nanoparticles (ZnO-HNPs). ZnO hierarchical structure was fabricated by an electrospinning technique followed by hydrothermal process. ZnO vertical nanorods structure was fabricated by hydrothermal method, while ZnO nanoparticles based sensors were prepared from commercial powder and wet chemical method. The morphology and properties of the fabricated samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). VOCs sensing responses toward acetone, ethanol and methanol with respect to altered ZnO nanostructures was systematically compared at different working temperatures. The enhanced response at low working temperatures induced by the open space hierarchical structure was observed. The VOCs sensing mechanisms of the ZnO nanostructures based sensing layer were also explained and discussed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.