Abstract

In this study, scrap irons (SI)/granular activated carbons (GAC) micro-electrolysis treatment and persulfate-releasing materials (PRM) treatment were employed to construct the combination reduction and oxidation system to treat 2,4-dinitrotoluene (2,4-DNT) contaminated groundwater. The 2,4-DNT treatment efficiencies in the PRM pre-treatment before SI/GAC micro-electrolysis treatment (FM-1 = PRM + SI/GAC) and SI/GAC micro-electrolysis pre-treatment before the PRM treatment (FM-3 = SI/GAC + PRM) were investigated in two separated columns. As control groups, the separated SI and GAC instead of the SI/GAC mixture were used in another two separated columns (FM-2 = PRM + SI + GAC; FM-4 = SI + GAC + PRM). The highest treatment efficiencies of 2,4-DNT in the FM-1 and FM-3 systems reached 79% and 93% during 5 PV, respectively. We found that the filling position of SI, GAC and PRM significantly affected the variations of pH, oxidation-reduction potential, Fe2+ and S2O82− concentrations in the combined systems. These results indicated that the SI/GAC micro-electrolysis pre-treatment of 2,4-DNT before the PRM treatment (FM-3) is more beneficial. The fifteen main intermediates in the combined system were identified by the detection of liquid chromatograph mass spectrometer. Furthermore, the possible treatment pathways of 2.4-DNT were proposed on the basis of identified intermediates. The treatment mechanisms in the FM-1 and FM-3 systems were proposed with the reduction mechanism in the SI/GAC micro-electrolysis system and the oxidation mechanism in the PRM treatment. Therefore, the combination of the reduction pre-treatment with the SI/GAC micro-electrolysis system and the oxidation post-treatment with persulfate can effectively treat the nitroaromatic compounds contaminated groundwater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call