Abstract

The comparative study on terrestrial net primary productivity in regions across climate gradients may help to better understand ecosystem response to climate change, yet is relatively understudied. Therefore, in this study, we compared the spatio-temporal patterns of net primary productivity during 2010-2019 and identify the different controls in three basins with typical climates in China: the Heihe River Basin with arid and semi-arid climate, Weihe River Basin with semi-arid and semi-humid climate, and Lower Yangtze River Basin with humid climate. Results indicated that the net primary productivity followed the order: Lower Yangtze River Basin (480.3 g C m−2 yr−1) > Weihe River Basin (346.7 g C m−2 yr−1) > Heihe River Basin (98.1 g C m−2 yr−1). The vegetation in the Heihe River Basin had severel hydrothermal limitation as the greatest importance of temperature and precipitation to the net primary productivity. In contrast, land cover type instead of climate became the most important variable on net primary productivity in the Weihe River Basin, and topography and land cover type were critical controls in the Lower Yangtze River Basin. In addition, the annual net primary productivity in all three areas exhibited an increasing trend during 2010-2019. However, the increase of net primary productivity in the Heihe River Basin was primarily driven by the increase of both temperature and precipitation due to the warming and humification in the northwestern of China. In contrast, the increase of temperature (especially spring warming) dominated the increase of net primary productivity in the Weihe River Basin and Lower Yangtze River Basin, due to the relatively sufficient precipitation. Furthermore, monthly net primary productivity exhibited a unimodal curve throughout the year. However, the increasing trend nearly stopped in June and July in the Lower Yangtze River Basin. This is possibly due to the light deficiency with abundant precipitation for plant photosynthesis in the natural ecosystem like forest and shrubland, and the rotation from wheat harvesting to rice planting in the cropland in these months.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call