Abstract

In this paper, ZnSTe quantum dots-based hybrid solar cells (HSC) with two different device architectures have been investigated. The improved performance of the poly(3-hexylthiophene) (P3HT) and [6,6]phenyl C71 butyric acid methyl ester (PC71BM)-based bulk heterojunction (BHJ) solar cells by the incorporation of ZnSTe quantum dots (QDs) with an average size of 2.96 nm in PEDOT:PSS layer and active layer that have been demonstrated. Although the efficiency of both types of devices is almost the same, a close comparison reveals different reasons behind their improved performance. The device prepared with QDs in the HTL has shown reduced series resistance, increased shunt resistance, and improved mobility. On the other hand, QDs in the photoactive layer demonstrates increased photo-generation leading to improved efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.