Abstract

With the advent of nanoscience, nanotechnology and their applications in various fields, mesoporous silica nanoparticles have gained popularity due to their stability, biocompatibility, unique honeycomb-like structures - ordered and random by nature, large surface to volume ratio, porosity, active surfaces, high loading capacity, ease of interactions with solvent, solute and suspended particles. These multitudes of intrinsic properties have motivated us towards an interdisciplinary detailed study on applications of mesoporous silica with an intention in increasing efficacy of productivity, growth if any, in plant life. This study aims at finding modus operandi of the structural uniqueness and eccentricity of various types of mesoporous silica in maneuvering their own functionality as a potential regulator for growth of seedlings of model plant Vigna radiata. We undertook characterization of surface, morphology, epitome of porosity for MCM 41 and MCM 48 using various experimental techniques followed by application of the same to growing seedlings at various dosages. It turned out that mesoporous silica nanoparticles, inarguably have higher efficacy in promoting plant growth, reducing stress, and enhancing basic metabolic rates at optimum dosage. Optimal operation point was determined at effective dosages for MCM 41 and MCM 48 those are being much lower than that of conventional silica nanoparticles. This optimum dosage is attributed to the structures of the nanoparticles used and implied further that higher pore volume, higher surface to volume ratio in case of MCM 41 at higher dosage lead to better adsorption of ions and functionality in contrast to that of MCM 48.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.