Abstract

Replacing the traditional casting method with wire arc additive manufacturing (WAAM) to produce complex shaped parts will lead to using cost-effective technology even for challenging engineering applications depending on their geometry and number of the parts to be produced. This work performed a comparative study on the stainless steel 316 parts manufactured by WAAM and sand casting to reveal the microstructural, mechanical, wear, and corrosion behaviors. The WAAM components were manufactured using three different cooling dwell times and compared in terms of microstructures with the as-cast and heat-treated cast parts to reveal the properties of the WAAM parts. It was concluded that WAAM is a viable engineering alternative to the casting technology. Results showed that the WAAM and cast parts revealed similar microstructures, including delta ferrite and austenite phases, but the cast parts had a coarser grain and lower amount of delta ferrite due to slower cooling during the solidification. The yield and tensile strength of WAAM parts showed an increasing trend with the increase in dwell time, and on average, their yield strength was ∼1.5 times higher than in cast parts due to the smaller grains and more elevated δ-ferrite content resulting from rapid cooling. Furthermore, the greatest wear resistance was obtained in the cast parts after solution annealing heat treatment followed by water quenching. In contrast the highest corrosion resistance was obtained from WAAM parts produced using a dwell time of 120 sec. In conclusion, WAAM technology can be an excellent alternative to casting technology for producing stainless-steel parts with optimized process parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call