Abstract

Microbiological and physical-chemical characteristics of subtropical forest, grassland and cropfield soils from the karst areas of Southwest China were investigated. The study revealed that the conversion of natural forest to other forms of land would lead to a reduction in soil organic C(26.2%–35.3%), total N(37.2%–55.8%), total P(32.9%–43.6%), microbial biomass C(35.4%–49.1%), N(37.2%–55.8%), and P(25.8%–41.9%). Comparative analysis of microbial activity in terms of basal soil respiration showed maximum activity in forest soil and minimum in cropfield soil. Analysis of microbial metabolic respiratory activity indicated a relatively greater respiratory loss of CO2-C per unit microbial biomass in cropfield and grassland than in forest soil. Considering the importance of microbial components in soil, it is concluded that land use in different ways will lead to the reduction of biological stability of soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.