Abstract

Mechanical, thermal, and water barrier properties of poly(lactic acid) (PLA) film reinforced with cellulose nanofibrils (CNF) and bacterial nanocellulose (BNC) were studied and compared. The in-situ formation of sodium carbonate (Na2CO3) on the BNC surface may aid in reducing the interchain hydrogen bonding and agglomeration of BNC fibers. At optimum loading, both CNF/PLA and BNC/PLA nanocomposite films exhibited higher tensile strength and Young’s modulus than the neat PLA without sacrificing its toughness. The BNC/PLA nanocomposite films displayed lower water vapor transmission rate (WVTR) as compared to neat PLA and CNF/PLA films at 0.5 and 1.0 wt%. BNC was found to induce imperfect crystal structures and exhibited higher overall crystallinity than neat PLA and CNF/PLA composites at 0.5 wt%. The BNC/PLA showed higher mechanical properties than CNF/PLA nanocomposites. Nanocellulose derived from plants and bacteria could provide promising solutions to develop high performance biobased-nanocomposites film for packaging application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call