Abstract

Machining of metal matrix composites (MMC) is a challenging process as they are difficult to cut and cutting tools get worn out in a short time. In this paper, the performance of two industrial carbide grades and a cubic boron nitride (CBN) tool are assessed when machining of AZ91/SiC composites. Mg-based composites with different volume fractions and particle sizes are machined at various cutting conditions to evaluate the tools wear resistance and finished surface. The surface of the worn-out tools and machined samples are analyzed by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and roughness tester. Results revealed that the tool wear increased for composites reinforced by smaller particles regardless of the tool type. Additionally, tool grade TH1000 resulted in longer tool life when machining of Mg-based composites compared to the CP500 grade so that at a cutting speed of 70 m/min and feed rate of 0.1 mm/rev, tool life improved nearly 250%. CBN tools showed the best performance when machining of Mg-based composites as tools became worn out after 255 s which is considerable compared to carbide tools. Also, the finished surface caused by cemented carbide CP500 indicated the worst quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.