Abstract

This study investigates effects of electrolyte feed patterns on the anode surface roughness in magnetic field–assisted ECM. Physical and mathematical models of forward feed and reverse feed of electrolyte are constructed using commercial COMSOL Multiphysics software, and the current density at the anode surface is simulated. In order to verify the correctness of the model and simulation results, we carried out an experimental study. According to the simulation results, the anode surface current density obtained by the electrolyte reverse feed is higher than that by forward feed. Moreover, the magnetic field is found to increase the anode surface current density in both forward and backward feeds of electrolyte. Meanwhile, experimental results show that the Ra by electrolyte reverse feed is smaller than that by forward feed, and in both feeds, the presence of magnetic field can contribute to the reduction of Ra value. It can be concluded that the magnetic field plays a positive role in improving the anode surface roughness during ECM, and the introduction of magnetic field into forward feed ECM results in a higher surface roughness than that into reverse feed ECM. Such conclusions are of great significance to widen the application of the extended magnetic field–assisted ECM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.