Abstract

The occurrence and spread of forest fires are the result of the interaction of many factors. In cross-border areas, different fire management systems may lead to different forest fire driving factors. A comparative analysis of the forest fire driving factors in different countries can help to provide ideas for fire prevention and control. In this study, based on the logistic regression (LR) model and standardized coefficients, we determined the relative impact of forest fire driving factors in different countries, in the cross-border area between China, North Korea and Russia from 2001 to 2020, and established a forest fire probability and fire risk level division using a Kriging interpolation. The results show that the climate is the most important factor affecting the probability of forest fires in the cross-border area, followed by the topography and vegetation factors; human activities have the least influence. From a country-by-country perspective, the forest fires on the Chinese side were more affected by humans than on the North Korean and Russian sides and they were mainly concentrated in areas with a low altitude and high population density. The forest fires on the North Korean side and the Russian side were more affected by nature than on the Chinese side and were mainly concentrated in areas with a low altitude, high temperature and little rainfall. The high-risk areas for forest fires were mostly concentrated near the border between China, North Korea and Russia, where transboundary fires pose a great threat to forest resources and rare animals. This study shows that there is a significant difference between the impact of different forest fire management systems on fire conditions, and that active forest fire control policies can effectively reduce the damage caused by forest fires. Due to the complexity of the geopolitics in cross-border areas, transboundary firefighting faces certain difficulties. In the future, it will be necessary to strengthen the cooperation between countries and establish transboundary joint defenses against forest fires in order to protect the declining forest resources and the habitats of rare animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call