Abstract

Direct contact condenser is widely used in oxy-fuel combustion capture systems. Unusually high content of water vapor in the flue gas requires rigorous sizing procedures for the condenser design. Non-linear differential equations for humidity, gas and liquid temperatures were set up to understand the evaporation/condensation process in the condenser. A Quasi-Newton method was adopted to simultaneously solve discrete equations to avoid difficulty in convergence.This model was firstly verified with reported experiments in a packed bed condenser. The significant impacts of L/G ratio on condenser height, packing volume, condenser diameter are identified. The optimum L/G range is obtained by the wet bulb temperature and minimal decrease on packing volume, and this results in the L/G range of 2.5–5.2 and 4.3–6.7 for air and oxy-fuel combustion respectively. The condenser diameter and packing volume corresponding to the optimum L/G range for air-fuel combustion are approximately twice and four times of these for oxy-fuel combustion. While the packing height for air-fuel combustion is slightly lower than that for oxy-fuel combustion.By economic analysis, normalized total capital and annual costs for air-fuel combustion are approximately four times and twice of these for oxy-fuel combustion. The decrease of L/G ratio reduces the normalized total capital and annual costs for both air and oxy-fuel combustion and more significant for air-fuel combustion. Therefore, the L/G ratio is preferably obtained by the wet bulb temperature. This paper sheds light on the rigorous design method and the optimization of design parameters for direct contact condenser.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call