Abstract

The significant growth of Additive Manufacturing (AM), visible over the last ten years, has driven an increase in demand for small gradation metallic powders of a size lower than 100 µm. Until now, most affordable powders for AM have been produced using gas atomization. Recently, a new, alternative method of powder production based on ultrasonic atomization with melting by electric arc has appeared. This paper summarizes the preliminary research results of AM samples made of two AISI 316L steel powder batches, one of which was obtained during Ultrasonic Atomization (UA) and the other during Plasma Arc Gas Atomization (PAGA). The comparison starts from powder particle statistical distribution, chemical composition analysis, density, and flowability measurements. After powder analysis, test samples were produced using AM to observe the differences in microstructure, porosity, and hardness. Finally, the test campaign covered an analysis of mechanical properties, including tensile testing with Digital Image Correlation (DIC) and Charpy’s impact tests. A comparative study of parts made of ultrasonic and gas atomization powders confirms the likelihood that both methods can deliver material of similar properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.