Abstract

This paper presents a comparative analysis of different analytical methods for identification of vehicle inertial parameters. The effectiveness of four different identification methods namely Recursive Least Squares (RLS), Recursive Kalman Filter (RKF), Gradient, and Extended Kalman Filter (EKF) for estimation of mass, moment of inertia and location of center of gravity of a vehicle is investigated. Requirements, capabilities and drawbacks of each method for real time applications are highlighted based on a comprehensive simulation analysis using CarSim. The Extended Kalman Filter method is shown to be the most reliable method for online identification of vehicle inertial parameters for active vehicle control, vehicle stability, and driver assistant systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.