Abstract

ABSTRACT Fog and dew, formed via different formation mechanisms, are suitable to study the liquid-gas-solid phase chemical interactions in the ambient atmosphere. A total of 24 fog and 19 dew samples were collected using Caltech Active Strand Cloud water Collector 2 and dew condensers, respectively, over New Delhi during winter months of 2014–15 and were characterised for pH and soluble inorganic ion using ion chromatograph. Dew samples were alkaline (pH = 6.26 ± 0.37) in comparison to natural rainwater pH of 5.6 and fog collected at rooftop (pH = 5.38 ± 1.3) and at ground level (pH = 5.96 ± 0.3). The volume weighted mean equivalents of cations followed the order NH4+ > Ca2+ > Mg2+~K+ > Na+ and of anions as SO42− > NO3–~Cl– > HCO3– > F– > NO2– in fog whereas the order for dew was Ca2+ > NH4+> Na+ > K+ > Mg2+ and SO42−~HCO3– > Cl– > NO2– > NO3– > F–. The Ca2+ ions were higher than NH4+ in dew while NH4+ was higher than Ca2+ in fog. Nitrite was higher in comparison to nitrate in dew while this was reverse in fog. Alkaline pH of dew samples might have played a role in the gas phase transfer and the base catalyzed transformation of NOx to HONO and subsequent dissolution of HONO in dew in comparison to fog. Acidity was caused more by sulphate ions (SO42−/NO3– ratio was 2.2 and 4.18 for fog and dew, respectively) but was effectively neutralised. Neutralisation factors were different in fog (NH4+ > Ca2+ > Mg2+) and dew (Ca2+ > NH4+ > Mg2+). The differences in the fog and dew composition are primarily linked to their formation processes.The agricultural fields and fossil fuel combustion were sources for ammonium, sulphates, nitrate and nitrite whereas locally resuspended crustal materials added calcium and magnesium carbonates. Vehicular and plant emissions, biomass burning and the oxidation of volatile organic compounds seems to be responsible for higher organic acids in dew and fog.

Highlights

  • Dew water represents the condensation of atmospheric water on a surface whereas fog is suspension of water droplets in the ambient atmosphere

  • The dew samples were alkaline (Avg. pH = 6.26 ± 0.37) in comparison to fog samples collected at rooftop and ground level (Avg. pH = 5.96 ± 0.3) (Table 1)

  • During dew formation on the collection surface, cation (Ca2+/Mg2+) rich particles could have entrapped within the droplet and the solubility of these ions from particles was more in dew whereas fog water- particle interactions take place in ambient air

Read more

Summary

Introduction

Dew water represents the condensation of atmospheric water on a surface whereas fog is suspension of water droplets in the ambient atmosphere. Recent studies in New Delhi on atmospheric condensate (Kumar and Yadav, 2013) and dew water (Yadav and Kumar, 2014) chemistry and their comparison with rainwater reported high nitrite and lower nitrate in dew when compared with those in rainwater and explained it’s possible reasons as direct dissolution from gas to aqueous phase or through dissolution of HONO in alkaline dew.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.