Abstract

The performance of finite element methods for dynamic crack propagation in brittle materials is studied. Three methods are considered: the extended finite element method (XFEM), element deletion method and interelement crack method. The extended finite element method is a method for arbitrary crack propagation without remeshing. In element deletion methods, elements that meet a fracture criterion are deleted. In interelement crack methods, the crack is limited to element edges; the separation of these edges is governed by a cohesive law. We show that XFEM and interelement method show similar crack speeds and crack paths. However, both fail to predict a benchmark experiment without adjustment of the energy release rate. The element deletion method performs very poorly for the refinements studied, and is unable to predict crack branching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call