Abstract

We report a comparative study on enhancing and inhibiting the sensing performance of Sr-doped ZnO (Sr0.01 Zn0.99O) and RuO2-activated Sr-doped ZnO heterostructured sensors towards the low concentration (≤ 50 ppm) of ammonia gas at ambient. Sub-microns sized with high specific surface area, high reactive, oxygen-deficient Sr-doped ZnO particles were synthesized at low temperature (196 °C) through facile glycine–nitrate solution combustion synthesis (SCS) method. Porous, adhered screen-printed film of Sr-doped ZnO with optical bandgap (3.22 eV) was dip-coated using 0.02 M RuCl3 aqueous solution to obtain RuO2 activation. Smaller crystallite size and lesser lattice distortion obtained with Sr-doping in ZnO enhance the gas response (S = 71) towards the 50 ppm of ammonia gas at room temperature. RuO2-activated Sr-doped ZnO sensor associated with lesser oxygen vacancies and a lower concentration of chemisorbed oxygen species due to passivation layer and no-spill-over activity of RuO2, which inhibits the gas response from 71 to 3. Sr-doped ZnO-based sensor shows high selectivity towards ammonia against 50 ppm of volatile organic compound (VOCs) vapor. Expeditious sensor kinetics (response time and recovery time) in the Sr-doped ZnO sensor was observed, in which smaller crystallite size offers a shorter distance for the diffusion of oxygen vacancies (Vo). Ultra-high-sensitive and selective sensors with ease and economical fabrication offer feasibility in industries and domestic applications where detection of the less concentration ammonia vapor is crucial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.