Abstract

CePr and CeMn mixed oxide catalysts were synthesized by inserting Pr and Mn atoms into CeO2. Catalytic performance on soot combustion was investigated, and several characterizations were carried out using X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area analysis, H2 temperature-programmed reduction, and X-ray diffraction. Results show that a cubic fluorite structure solid solution can be formed with Pr and Mn doped into CeO2 lattice. Three oxygen species, namely, lattice oxygen OI (O2−), defect oxygen species OII (O2−, O22−, and O−), and hydroxyl-like groups and adsorbed molecular water OIII, exist in the solid solution structure. In general, the defect oxygen species OII is responsible for soot combustion. CePr exhibits fast oxidation rate because of the presence of open oxygen migration channel (OI↔OII↔OIII), and reactive oxygen species OII can continue to be replenished. CeMn possesses a large amount of surface active oxygen, which results in excellent low-temperature catalytic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call