Abstract

Two Schiff base probes (S1 and S2) were prepared and synthesized by incorporating thienopyrimidine into salicylaldehyde or 3-ethoxysalicylaldehyde individually, with the aim of detecting Ga3+ and Pd2+ sequentially. Upon chelation with Ga3+, S1 and S2 exhibited fluorescence enhancement in DMSO/H2O buffer. Both S1-Ga3+ and S2-Ga3+ were quenched by Pd2+. The limit of detection for S1 in response to Ga3+ and Pd2+ was 2.86 × 10-7 and 4.4 × 10-9M, respectively. For S2, the limit of detection for Ga3+ and Pd2+ was 4.15 × 10-8 and 3.0 × 10-9M, respectively. Furthermore, the complexation ratios of both S1 and S2 with Ga3+ and Pd2+ were determined to be 1:2 through Job's plots, ESI-MS analysis, and theoretical calculations. Two molecular logic gates were constructed, leveraging the response behaviors of S1 and S2. Moreover, the potential utility of S1 and S2 for monitoring Ga3+ and Pd2+ in domestic water was verified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call