Abstract

In recent years, the increasing production and sales of automobiles have led to a notable rise in congestion on urban road traffic systems, particularly at ramps and intersections with traffic signals. Intelligent traffic signal control represents an effective means of addressing traffic congestion. Reinforcement learning methods have demonstrated considerable potential for addressing complex traffic signal control problems with multidimensional states and actions. In this research, the team propose Q-learning and Deep Q-Network (DQN) based signal control frameworks that use variable phase sequences and cycle times to adjust the order and the duration of signal phases to obtain a stable traffic signal control strategy. Experiments are simulated using the traffic simulator Simulation of Urban Mobility (SUMO) to test the average speed and the lane occupancy rate of vehicles entering the ramp to evaluate its safety performance and test the vehicle’s traveling time to assess its stability. The simulation results show that both reinforcement learning algorithms are able to control cars in dynamic traffic environments with higher average speed and lower lane occupancy rate than the no-control method and that the DQN control model improves the average speed by about 10% and reduces the lane occupancy rate by about 30% compared to the Q-learning control model, providing a higher safety performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call