Abstract
Undertakes a comparative study of two important interconnection network topologies: the star graph and the hypercube, from the graph theory point of view. Topological properties are derived for the star graph and are compared with the corresponding properties of the hypercube. Among other results, the authors determine necessary and sufficient conditions for shortest path routing and characterize maximum-sized families of parallel paths between any two nodes of the star graph. These parallel paths are proven of minimum length within a small additive constant. They also define greedy and asymptotically balanced spanning trees to support broadcasting and personalized communication on the star graph. These results confirm the already claimed topological superiority of the star graph over the hypercube.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.