Abstract

The work presented in this paper investigates the efficiency of various (i.e., $$D_{3}Q_{15}$$ , $$D_{3}Q_{19}$$ , and $$D_{3}Q_{27}$$ ) three-dimensional discrete velocity models of lattice Boltzmann method (LBM) for the simulation of turbulent flow past over a bluff body. The numerical setup consists of a square cylinder confined in a rectangular duct. Large eddy simulation (LES) model has been used for the simulation of turbulent eddies. The small-scale turbulent structures were resolved by using the conventional Smagorinsky subgrid-scale (SGS) model. The computations have been carried out on a uniform Cartesian grid. The results for different turbulent statistics have presented and compared with the available experimental and previous numerical (based on finite volume approach) results for Reynolds number $$Re_{d} = 3000$$ . The algorithm developed for the present simulation has been parallelized to run on Graphical Processing Unit (GPU) parallel platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.