Abstract

Recently published X-ray structures of three common forms, A, B and C, of oligomycin, including absolute configurations, are investigated to examine their binding to ATP Synthase. The X-ray studies reveal regions with differences in three-dimensional structure and hydrogen bonding propensity between the oligomycins, which may be associated with their potential to bind to sites on ATP Synthase. Computational docking studies carried out using MOE with the X-ray structures and an homology model of the F O domain of ATP Synthase from Escherichia coli, are used to derive an induced fit pocket. Docking of all oligomycins to this pocket indicate that the B and C forms bind more tightly than the A form. Consideration of the single crystal X-ray data alone indicate the B form may be the best inhibitor and that O(24) is the most important ligating group for binding, this is supported by the docking data. The latter reveals Asn214 and other key proton translocating residues to be the main residues contacted by the inhibitor. These data allow the binding modes of different forms of oligomycin to be deduced from X-ray single crystal data supported by molecular modelling and computational docking studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.