Abstract

In the present work, the influence of different sintering atmospheres and temperatures on physical properties of the Cu0.5Zn0.5Fe2O4 nanoparticles including the redistribution of Zn2+ and Fe3+ ions, the oxidation of Fe atoms in the lattice, crystallite sizes, IR bands, saturation magnetization and magnetic core sizes have been investigated. The fitting of XRD patterns by using Fullprof program and also FT-IR measurement show the formation of a cubic structure with no presence of impurity phase for all the samples. The unit cell parameter of the samples sintered at the air- and inert-ambient atmospheres trend to decrease with sintering temperature, but for the samples sintered under carbon monoxide-ambient atmosphere increase. The magnetization curves versus the applied magnetic field, indicate different behaviour for the samples sintered at 700 °C with the respect to the samples sintered at 300 °C. Also, the saturation magnetization increases with the sintering temperature and reach a maximum 61.68 emu/g in the sample sintered under reducing atmosphere at 600 °C. The magnetic particle size distributions of samples have been calculated by fitting the M–H curves with the size distributed Langevin function. The results obtained from the XRD and FTIR measurements suggest that the magnetic core size has the dominant effect in variation of the saturation magnetization of the samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call