Abstract

Aim. To estimate the effect of novel lythium bis(µ-xylarato)dihydrogermanate (IV) (Xygerm-1) on reinforcing properties of the lateral hypothalamus self-stimulation in rats compared to the reference drugs (lithium chloride and valproic acid) in rats with amphetamine-induced self-stimulation. Methods. To form a model of the brain self-stimulation, nichrome monopolar electrodes were implanted bilaterally in the lateral hypothalamic nucleus, followed by morphological control, and 7-10 days after the operation, the rats were trained to press a pedal for electrical stimulation of the brain. The effects of self-stimulation were assessed by analyzing the maximum rate of pedal pressing and the self-stimulation threshold. Study of the test compounds effects had been started when average self-stimulation threshold values varied by less than 10% for three consecutive sessions of the brain self-stimulation. Xygerm-1 (300-1800 mg/kg), valproic acid (30-300 mg/kg) and lithium chloride (25-200 mg/kg) were introduced as intraperitoneal injections to animals of the corresponding study groups (6 rats each). At the next stage of the experiment, effects of Xygerm-1, lithium chloride and valproic acid on amphetamine-induced (dose 0.5 mg/kg) brain self-stimulation reaction increase were studied at the same animal groups. Results. At the first stage of the experiment Xygerm-1 (1200 and 1800 mg/kg), lithium chloride (100 and 200 mg/kg) and valproic acid (300 mg/kg) had significantly increased self-stimulation threshold. High doses of Xygerm-1 and lithium chloride (1800 and 200 mg/kg correspondingly) had relevantly decreased the average self-stimulation rate. There was also a tendency for the average self-stimulation rate to decrease in animals administered valproic acid, though, not statistically significant. The use of Xygerm-1 and lithium chloride induced the dose-dependant self-stimulation threshold increase, decreased by the use of amphetamine sulfate. Rather high doses of Xygerm-1 and lithium chloride (1800 and 100 mg/kg correspondingly) had also blocked amphetamine-induced increase in pedal pressing rate. Studied doses of valproic acid did not altered the amphetamine-induced brain self-stimulation reaction increase. Conclusion. The novel compound bis(µ-xylarato)dihydrogermanate (IV) has a strong influence on behavior, in particular on the brain reward systems, which is similar to the action of lithium chloride and differs from the effect of valproic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call