Abstract

Uncoupling proteins (UCPs) mediate fatty acid-induced proton cycling in mitochondria, which is stimulated by superoxide and inhibited by GDP. Fatty acid anions can also be transported by adenine nucleotide translocase (ANT), thus resulting in the uncoupling of oxidative phosphorylation. In the present work, an attempt was made to distinguish between the protonophoric activity of UCP3 and that of ANT using inhibition analysis. This study was carried out using mitochondria from skeletal muscles of hibernating Yakut ground squirrel, which have a significant level of UCP3 mRNA. We found that millimolar concentrations of GDP, which is considered to be a specific inhibitor of UCPs, slightly recoupled the mitochondrial respiration and restored the membrane potential. Addition of the specific ANT inhibitor CAT (carboxyatractylate), in micromolar concentration, prior to GDP prevented its recoupling effect. Moreover, GDP and ADP exhibited a competitive kinetic behavior with respect to ANT. In brown adipose tissue, CAT did not prevent the UCP1-iduced increase in chloride permeability and the inhibitory effect of GDP, thus confirming the inability of CAT to affect UCP1. These results allow us to conclude that the recoupling effect of purine nucleotides on skeletal muscle mitochondria of hibernating ground squirrels can be explained by interaction of the nucleotides with ANT, whereas UCP3 is not involved in the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.