Abstract

Until today the modeling of human body biomechanics poses many great challenges because of the complex geometry and the substantial heterogeneity of human body. We developed a detailed human body finite element model in which the human body is represented realistically in both the geometry and the material properties. The model includes the detailed head (face, skull, brain, and spinal cord), the skeleton, and air cavities (including the lung). Hence it can be used to accurately acquire the stress wave propagation in the human body under various loading conditions. The blast loading on the human surface was generated from the simulated C4 blast explosions, via a novel combination of 1-D and 3-D numerical formulations. We used the explicit finite element solver in the multi-physics code CoBi for the human body biomechanics. This is capable of solving the resulting large system containing millions of unknowns in an extremely scalable fashion. The meshes generated for these simulations are of good quality. This enables us to employ relatively large time step sizes, without resorting to the artificial time scaling treatment. In order to study the human body dynamic response under the blast loading, we also developed an interface to apply the blast pressure loading on the external human body surface. These newly developed models were used to conduct parametric simulations to find out the brain biomechanical response when the blasts impact the human body. Under the same blast loading we also show the differences of brain response when having different material properties for the skeleton, the existence of other body parts such as torso.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call