Abstract

The use of ceramic coatings to improve mechanical, chemical, and biological properties of a large variety of materials including polymers and metals has often produced technologically attractive as well as problematic surfaces to study, because of their complicate morphology compared to smooth surfaces obtained, for example, by atomistic processes. In this work we deposited thin films of zirconia by a new generation pulsed electron deposition system named Ionized Jet Deposition onto four materials, different from each other by structure and surface texture, and applied methods of fractal geometry to investigate their microstructure and roughening mechanism at different thickness values. Our findings show that the film growth does not follow any known class of universality, but is strongly influenced by non-local effects inherent to deposition technique. In this context, we show that deposition onto rough materials is dominated by a strong memory effect that leads to uniform surface coverages that microscopically retain the shape of the substrate. This circumstance is potentially useful for deposition of conformal coatings in view of applications of such plasma-based deposition technique to cases of technological interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.