Abstract
The Burgers’ equation is solved using the explicit finite difference method (EFDM) and physics-informed neural networks (PINN). We compare our numerical results, obtained using the EFDM and PINN for three test problems with various initial conditions and Dirichlet boundary conditions, with the analytical solutions, and, while both approaches yield very good agreement, the EFDM results are more closely aligned with the analytical solutions. Since there is good agreement between all of the numerical findings from the EFDM, PINN, and analytical solutions, both approaches are competitive and deserving of recommendation. The conclusions that are provided are significant for simulating a variety of nonlinear physical phenomena, such as those that occur in flood waves in rivers, chromatography, gas dynamics, and traffic flow. Additionally, the concepts of the solution techniques used in this study may be applied to the development of numerical models for this class of nonlinear partial differential equations by present and future model developers of a wide range of diverse nonlinear physical processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.