Abstract

Vertically well aligned zinc oxide nanorods (ZnO NRs) were grown on p-GaN by electrodeposition (ED) and aqueous chemical growth (ACG) techniques and the structures were employed to fabricate white light emitting diodes (LEDs). Room temperature current voltage ( I – V ), photoluminescence (PL), and electroluminescence (EL) measurements were performed to investigate and compare both LEDs. In general, the I – V characteristics and the PL spectra of both LEDs were rather similar. Nevertheless, the EL of the ED samples showed an extra emission peak shoulder at 730 nm. Moreover, at the same injection current, the EL spectrum of the ED light emitting diode showed a small UV shift of 12 nm and its white peak was found to be broader when compared to the ACG grown LED. The broadening of the EL spectrum of the LED grown by ED is due to the introduction of more radiative deep level defects. The presented LEDs have shown excellent color rendering indexes reaching a value as high as 95. These results indicate that the ZnO nanorods grown by both techniques possess very interesting electrical and optical properties but the ED is found to be faster and more suitable for the fabrication of white LEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.