Abstract

Oxide–semiconductor interface quality of high-pressure reactive sputtered (HPRS) TiO2 films annealed in O2 at temperatures ranging from 600 to 900 °C, and atomic layer deposited (ALD) TiO2 films grown at 225 or 275 °C from TiCl4 or Ti(OC2H5)4, and annealed at 750 °C in O2, has been studied on silicon substrates. Our attention has been focused on the interfacial state and disordered-induced gap state densities. From our results, HPRS films annealed at 900 °C in oxygen atmosphere exhibit the best characteristics, with Dit density being the lowest value measured in this work (5–6 × 1011 cm−2 eV−1), and undetectable conductance transients within our experimental limits. This result can be due to two contributions: the increase of the SiO2 film thickness and the crystallinity, since in the films annealed at 900 °C rutile is the dominant crystalline phase, as revealed by transmission electron microscopy and infrared spectroscopy. In the case of annealing in the range of 600–800 °C, anatase and rutile phases coexist. Disorder-induced gap state (DIGS) density is greater for 700 °C annealed HPRS films than for 750 °C annealed ALD TiO2 films, whereas 800 °C annealing offers DIGS density values similar to ALD cases. For ALD films, the studies clearly reveal the dependence of trap densities on the chemical route used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.