Abstract

High-pressure technology is used as an alternative to heat processing because of its inactivating effect on microorganisms and enzymes. However, it can also alter the structure of other muscle proteins. The present study compares the effects of high pressure (300 MPa, 7°C, 20 min) on the proteolytic degradation and alterations in the myofibrillar proteins of sardine and blue whiting muscle. Also, muscle homogenates and enzyme extracts were pressurized in order to evaluate the high-pressure effects on unprotected proteolytic enzymes outside the whole muscle structure. Peak proteolytic activity was found to occur at 55°C in both species. The peak activity pH was pH 3 for the sardine and pH 8 for the blue whiting; the main enzyme families being aspartic proteases in the former and alkaline serine proteases in the latter. Pressurization lowered activity levels at the peak activity pH and temperature in the fish muscle (by 30.8% in the sardine and by 9.5% in the blue whiting) and also slightly in the enzyme extracts (by 16.8% in the sardine and by 19.4% in the blue whiting). The electrophoretic profiles disclosed higher protein degradation in the pressurized muscle. Overall, the observed changes in proteolytic activity can be attributed not only to the effect of high pressure on the enzymes, but also and mainly, to the effect on other muscle proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call