Abstract

This paper presents a comparative study of the damping force and energy absorbtion capacity of a typical conventional-viscous and a regenerative shock absorber for vehicle suspension. Regenerative shock absorber (RSA) is a shock absorber which can regenerate the dissipated vibration energy from vehicle suspension into electricity. In this research, a prototype of regenerative shock absorber was developed, its damping force and energy absorbtion capacity were tested, and the results were analized and compared with those of a typical conventional-viscous shock absorber. The regenerative and viscous shock absorber were compressed and extended in various excitation frequency using damping force testing equipment to obtain force-velocity and the force-displacement curves. The force-velocity and force-displacement curves indicate the damping force and energy absorbtion capacity of the shock absorber. The results show that the damping force of the typical-viscous shock absorber closed to linear at all exciation frequencies. For regenerative shock absorber, nonlinearity and large hysteresis area of the damping force occur at all excitation frequencies. Further, the energy absorbtion capacity of the typical-viscous shock absorber shows an elliptical area with the compression part bigger than the extension one, while those of the regenerative shock absorber shows an asymmetric square area, which indicates a smaller energy absorbtion capacity. These phenomena indicate the significant effect of implementing dry friction damper and elctrical damper to the characteristics of regenerative shock absorber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.