Abstract

In recent years, neural network-based English-Chinese translation models have gradually supplanted traditional translation methods. The neural translation model primarily models the entire translation process using the “encoder-attention-decoder” structure. Simultaneously, grammar knowledge is essential for translation, as it aids in the grammatical representation of word sequences and reduces grammatical errors. The focus of this article is on two major studies on attention mechanisms and grammatical knowledge, which will be used to carry out the following two studies. Firstly, in view of the existing neural network structure to build translation model caused by long distance dependent on long-distance information lost in the delivery, leading to problems in terms of the translation effect which is not ideal, put forward a kind of embedded attention long short-term memory (LSTM) network translation model. Secondly, in view of the lack of grammatical prior knowledge in translation models, a method is proposed to integrate grammatical information into translation models as prior knowledge. Finally, the proposed model is simulated on the IWSLT2019 dataset. The results show that the proposed model has a better representation of source language context information than the existing translation model based on the standard LSTM model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.