Abstract

Al-substituted α-type nickel hydroxides (α-Ni(OH)2) containing different interlayer anions (NO3−, SO42−, Cl−, CO32−, OH−) are synthesized via a polyacrylamide (PAM) assisted two-step drying method. The effects of interlayer anions on the microstructure, morphology and electrochemical performance of Al-substituted α-Ni(OH)2 are investigated by X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscope (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge/discharge tests. The results demonstrate that the intercalated anions have a critical effect on the basal plane spacing, degree of crystallinity, and electrochemical properties of the end products. Especially, the intercalated anions have a marked impact on the activation process of the nickel electrodes. The Cl− intercalated α-Ni(OH)2 sample exhibits better high-rate discharge ability and cycle stability than samples with other interlayer anions. This is attributed to the higher crystallinity, better exchange ability and smaller anion size of Cl−. The anion exchange ability and the size of anions also play an important role in the proton diffusion rate, which directly affects the electrochemical properties of α-Ni(OH)2. The relationships between the specific capacity and basal spacing are also discussed in details for the five samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.