Abstract
Pupil responses triggered by specific stimulus attributes such as spatial structure, colour and light flux changes were measured in eight domestic fowl. Comparative experiments were also carried out in human subjects. The results were unexpected in that large increments in light flux caused only small constrictions of the pupil. A red stimulus, on the other hand, caused a relatively large pupil response, but a green stimulus was less effective. This finding suggests that the size of the pupil, apart from being controlled by well-described pretectal pathways that mediate luminance responses, is also subject to other inputs. The pupil response in the domestic fowl may therefore make an effective quantitative indicator of things of significance to the animal. In some ways these observations are similar to other findings in primates in that the processing of stimulus attributes such as colour and structure that are not normally associated with the light reflex pathway can cause a pupil response. The fowl pupil does however respond very fast when large light flux changes or red stimuli are involved. Results obtained with sinusoidally modulated light flux changes reveal a short response latency of 105 ms (SD=8.3). In contrast, human responses measured for similar stimulus conditions reveal a latency of 434 ms (SD=36). The speed of pupil response in the fowl is significantly higher than in humans, but the response amplitude is usually small. Another interesting observation is the lack of sustained response to changes in ambient illumination. These findings suggest that the input to the pupilloconstrictor neurones in the fowl consists largely of transient neurones with little sustained component.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.