Abstract

One of the most important aspects in battery management systems (BMS) in electric vehicles is the state of charge (SOC) estimation. SOC needs to be accurately determined for safety and performance reasons but cannot be measured directly due to the flatness and hysteresis of the open circuit voltage (OCV) curve of Lithium-ion chemistries as LiFePO4. The classical approach of current integration (Coulomb counting) cannot solve the problems of accumulative error and inaccurate initial values, thus advanced estimation algorithms are applied to determine the sate of charge. In this work, three model-based state observer designs including Luenberger observer, Extended Kalman Filter (EKF) and Sigma Point Kalman Filter (SPKF) are carried out and studied. These estimation approaches are verified using measurement data acquired from commercial LiFePO4 cells. In addition, computational tests analyze the systems performances in terms of tracking accuracy, estimation robustness against temperature uncertainty, sensor drift, and convergence behavior with an initial SOC offset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.