Abstract
Spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles were prepared, characterized, and tested in degradation of aqueous phenol in the presence of peroxymonosulfate. It was found that Mn3O4 and Co3O4 nanoparticles are highly effective in heterogeneous activation of peroxymonosulfate to produce sulfate radicals for phenol degradation. The activity shows an order of Mn3O4>Co3O4>Fe3O4. Mn3O4 could fast and completely remove phenol in about 20min, at the conditions of 25ppm phenol, 0.4g/L catalyst, 2g/L oxone®, and 25°C. A pseudo first order model would fit to phenol degradation kinetics and activation energies on Mn3O4 and Co3O4 were obtained as 38.5 and 66.2kJ/mol, respectively. In addition, Mn3O4 exhibited excellent catalytic stability in several runs, demonstrating that Mn3O4 is a promising catalyst alternative to toxic Co3O4 for water treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.