Abstract

The Al–Sm system is selected as a model system to study the transition process from liquid and amorphous to crystalline states. In recent work, we have shown that, in addition to long-range translational periodicity, crystal structures display well-defined short-range local atomic packing motifs that transcends liquid, amorphous and crystalline states. In this paper, we investigate the longer range spatial packing of these short-range motifs by studying the interconnections of Sm–Sm networks in different amorphous and crystalline samples obtained from molecular dynamics simulations. In our analysis, we concentrate on Sm–Sm distances in the range ~5.0–7.2 Å, corresponding to Sm atoms in the second and third shells of Sm-centred clusters. We discover a number of empirical rules characterising the evolution of Sm networks from the liquid and amorphous states to associated metastable crystalline phases experimentally observed in the initial stages of devitrification of different amorphous samples. As direct simulation of glass formation is difficult because of the vast difference between experimental quench rates and what is achievable on the computer, we hope these rules will be helpful in building a better picture of structural evolution during glass formation as well as a more detailed description of phase selection and growth during devitrification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.