Abstract
Mining frequent itemsets from transactional datasets is a well known problem. Thus, various methods have been studied to deal with this issue. Recently, original proposals have emerged from the cross-fertilization between data mining and artificial intelligence. In these declarative approaches, the itemset mining problem is modeled either as a constraint network or a propositional formula whose models correspond to the patterns of interest. In this paper, we focus on the propositional satisfiability based itemset mining framework. Our main goal is to enhance the efficiency of SAT model enumeration algorithms. This issue is particularly crucial for the scalability and competitiveness of such declarative itemset mining approaches. In this context, we deeply analyse the effect of the different SAT solver components on the efficiency of the model enumeration problem. Our analysis includes the main components of modern SAT solvers such as restarts, activity based variable ordering heuristics and clauses learning mechanism. Through extensive experiments, we show that these classical components play an essential role in such procedure to improve the performance by pushing forward the efficiency of SAT solvers. More precisely, our experimental evaluation includes a comparative study in enumerating all the models corresponding to the closed frequent itemsets. Additionally, our experimental analysis is extended to include the Top-k itemset mining problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.