Abstract

The fractional oscillator equation with the sinusoidal excitation mx″(t)+bDtαx(t)+kx(t)=Fsin(ωt), m,b,k,ω>0 and 0<α<2 is comparatively considered for the Weyl fractional derivative and the Caputo fractional derivative. In the sense of Weyl, the fractional oscillator equation is solved to be a steady periodic oscillation xW(t). In the sense of Caputo, the fractional oscillator equation is solved and subjected to initial conditions. For the fractional case α∈(0,1)∪(1,2), the response to excitation, S(t), is a superposition of three parts: the steady periodic oscillation xW(t), an exponentially decaying oscillation and a monotone recovery term in negative power law. For the two responses to initial values, S0(t) and S1(t), either of them is a superposition of an exponentially decaying oscillation and a monotone recovery term in negative power law. The monotone recovery terms come from the Hankel integrals which make the fractional case different from the integer-order case. The asymptotic behaviors of the solutions removing the steady periodic response are given for the four cases of the initial values. The Weyl fractional derivative is suitable for a describing steady-state problem, and can directly lead to a steady periodic solution. The Caputo fractional derivative is applied to an initial value problem and the steady component of the solution is just the solution in the corresponding Weyl sense.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call