Abstract

Solving practical mechanical problems is considered as a real challenge for evaluating the efficiency of newly developed algorithms. The present article introduces a comparative study on the application of ten recent meta-heuristic approaches to optimize the design of six mechanical engineering optimization problems. The algorithms are: the artificial bee colony (ABC), particle swarm optimization (PSO) algorithm, moth-flame optimization (MFO), ant lion optimizer (ALO), water cycle algorithm (WCA), evaporation rate WCA (ER-WCA), grey wolf optimizer (GWO), mine blast algorithm (MBA), whale optimization algorithm (WOA) and salp swarm algorithm (SSA). The performances of the algorithms are tested quantitatively and qualitatively using convergence speed, solution quality, and the robustness. The experimental results on the six mechanical problems demonstrate the efficiency and the ability of the algorithms used in this article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.