Abstract

In this paper, two recently introduced parameter identification (PID) methods are applied to the real-time estimation of aerodynamic coefficients from the flight data of the NASA F/A-18 HARV aircraft. The study specifically addresses the computational effort for each PID technique, which can be a decisive factor for on-line real-time application purposes. The results are also compared with off-line parameter identification results obtained through the well-known Maximum Likelihood method as well as wind tunnel data. Following a coding for the two on-line methods organized to minimize the computations, the required on-line computational effort associated with the frequency domain PID method is shown to be lower than that with the time domain PID method by almost one order of magnitude. The overall results show that two on-line PID methods exhibit consistent performance. The frequency domain-based method seems to provide estimates closer to the Maximum Likelihood and wind tunnel results for both longitudinal and lateral/directional dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.