Abstract

Noble metals deposited on TiO2 act as electron traps facilitating electron-hole separation and promoting the interfacial electron transfer process. In particular, silver nanoparticles have the ability to absorb visible light due to localized surface plasmon resonance. Here we report a photochemical and photocatalytic method for depositing Ag nanoparticles (2-20 nm) on TiO2 by using UV light at room temperature. UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and time-resolved microwave conductivity were used as characterization techniques. The photocatalytic activity was investigated by measuring the decomposition of rhodamine B under UV and visible light irradiation. The fastest bleaching of RhB under visible-light irradiation has been obtained by Ag/TiO2 plasmonic photocatalyst prepared by the photocatalytic route. These results were explained in terms of the more efficient photon absorption due to the presence of the surface plasmon resonance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.