Abstract

The mercury injection capillary pressure (MICP) method and nuclear magnetic resonance (NMR) relaxometry provide insight into the pore radius distribution (PRD) either of pore throats (MICP) or pore bodies (NMR) of rocks. One variety of permeability ( k) prediction models is based on the knowledge of the PRD. We have evaluated the quality of k-prediction models using a sample set of Eocene sandstones with known values of measured permeability. The Swanson method relates the apex point of the capillary pressure curve to k. Although this widely acknowledged method uses only a single point of the PRD, it provides a predictive quality with an average ratio between the measured and predicted permeability lower than a factor of three. The pore throat radius of the apex point proves to be a good proxy of the effective hydraulic radius. We determine that an improved k prediction can be achieved if a larger section of the PRD is considered in our generalized model. Using reliable values of surface relaxivity, the NMR relaxation time distribution is transformed into a PRD. We find that a characteristic apex point can be determined from NMR data, too. This characteristic point enables a good k prediction for the set of Eocene sandstone samples. In contrast to MICP, the predictive quality cannot be improved by applying an integration over a larger section of the PRD. Further tests with samples of different pore structure and lithology should demonstrate the potential of our models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.