Abstract
Particle swarm optimization is a novel evolutionary stochastic global optimization method that has gained popularity in the chemical engineering community. This optimization strategy has been successfully used for several applications including thermodynamic calculations. To the best of our knowledge, the performance of PSO in phase stability and equilibrium calculations for both multicomponent reactive and non-reactive mixtures has not yet been reported. This study introduces the application of particle swarm optimization and several of its variants for solving phase stability and equilibrium problems in multicomponent systems with or without chemical equilibrium. The reliability and efficiency of a number of particle swarm optimization algorithms are tested and compared using multicomponent systems with vapor–liquid and liquid–liquid equilibrium. Our results indicate that the classical particle swarm optimization with constant cognitive and social parameters is a reliable method and offers the best performance for global minimization of the tangent plane distance function and the Gibbs energy function in both reactive and non-reactive systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.