Abstract

Palmprint images contain rich unique features for reliable human identification, which makes it a very competitive topic in biometric research. A great many different low resolution palmprint recognition algorithms have been developed, which can be roughly grouped into three categories: holistic-based, feature-based, and hybrid methods. The purpose of this article is to provide an updated survey of palmprint recognition methods, and present a comparative study to evaluate the performance of the state-of-the-art palmprint recognition methods. Using the Hong Kong Polytechnic University (HKPU) palmprint database (version 2), we compare the recognition performance of a number of holistic-based (Fisherpalms and DCT+LDA) and local feature-based (competitive code, ordinal code, robust line orientation code, derivative of Gaussian code, and wide line detector) methods, and then investigate the error correlation and score-level fusion performance of different algorithms. After discussing the achievements and limitations of current palmprint recognition algorithms, we conclude with providing several potential research directions for the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.