Abstract

Reduction of platinum catalysts loading is a central issue in polymer electrolyte fuel cells. As alternatives for platinum, some organic metal chelate compounds are tested as cathode catalysts, such as cobalt aza-complexes or cobalt complexes possessing aminophenyl moieties featured as Co-N4 or Co-N2O2 chelate structures. The way of immobilization of catalysts on the graphite surface influences their stability as well as the performance of oxygen reduction. Heat-treated catalysts supported on graphite at 600°C show much better oxygen reduction abilities than as-received metal complexes. The original chemical structure of metal complexes affects crucially the catalytic ability, though initial structures of molecules are no more intact after the heat treatment. The catalytic activity of these complexes may originate from the central chelate unit CoN4 on the carbon substrate, and this unit is assumed to constitute the basic coordination site for an oxygen molecule. Electropolymerized catalysts impart a high level of oxygen reduction ability, probably due to the improved molecular orientation for oxygen coordination and formation of good chelate sites on the graphite surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.